
AN4
Adding New Objects to the MIB

GS-AN004 V0.1 PAGE 1 OF 6 CONFIDENTIAL

Application Note 4
Sensor Node Software

Adding New Objects to the
GainSpan Sensor Platform Software

Management Information Base (MIB)
INTRODUCTION

ETWORK MANAGEMENT SYSTEMS (NMS) use the Simple Network Management Protocol (SNMP)
to manage and control network devices. Each managed device includes a database of managed ob-

jects called a Management Information Base (MIB) and an SNMP agent. The MIB is hierarchically-
structured (tree-shaped) database of managed objects, defined using ASN.1 notation. This tree has the
individually managed objects as its leaves. Several IETF RFCs define the root and first few levels of the
standard MIB hierarchy. A numeric tag called the object identifier (OID) uniquely identifies each man-
aged object in the MIB. The NMS accesses these objects by issuing SNMP SET and GET requests to the
agent, specifying its OID. The agent can also notify the NMS of significant events by sending unsolicited
messages, called SNMP TRAPs.

The GainSpan Sensor Platform Software (GSPS) includes an SNMP agent that is an add-on to its Green
Hills Software (GHS) GHNet network stack, both of which were originally developed by Treck, Inc.
Please refer to the SNMP User Guide for detailed technical information about the GHS SNMP agent. The
GSPS MIB is defined in the file LPX-MIB.

SNMP Manager SNMP Agent

MIB

Managed DeviceNetwork Management
System

SNMP

Figure 1: Network Management Systems use SNMP to manage network devices

The following is a link to a useful SNMP tutorial: http://www.dpstele.com/layers/l2/snmp_tutorials.php

PROCEDURES FOR ADDING MANAGED OBJECTS TO A MIB
There are two options for adding new application-specific objects to the standard GSPS MIB. They are
both explained below.

N

 AN4: ADDING NEW OBJECTS TO THE MIB

GS-AN004 V0.1 PAGE 2 OF 6 CONFIDENTIAL

Method 1: The Hard Way
This method can be used to add new, fully specified MIB objects anywhere in the MIB hierarchy.

1. Find a spot for the new object in existing MIB
The first step to adding a new object to an existing MIB is to pick a place in the hierarchy for the new ob-
ject. Each object has an OID that uniquely identifies it, but also explicitly specifies its location in the hier-
archy. SNMP OIDs use a dotted decimal notation, where each digit represents which leaf node is speci-
fied at a given level in the hierarchy. Many levels of the SNMP hierarchy have already been well defined
by several IETF RFCs. Vendor-specific MIBs all live starting at
iso(1).org(3).dod(6).internet(1).private(4).enterprise(1). The Internet Assigned Numbers Association
(IANA) maintains this level of the hierarchy. For example, GainSpan’s vendor-specific OID is
1.3.6.1.4.1.28295. A complete up-to-date list of assigned Private Enterprise Numbers (PEN) can be found
at http://www.iana.org/assignments/enterprise-numbers. Reserving a PEN for your own organization is
very easy and completely free! Just register at http://pen.iana.org/pen/PenApplication.page.

root

iso (1)ccitt (0) joint-iso-ccitt (2)

org (3)

dod (6)

internet (1)

directory (1) mgmt (2) private (4)experimental (4)

enterprise (1)

gainspan (28295)
Figure 2: SNMP MIB OID hierarchy, showing GainSpan MIB OID.

The GSPS MIB is defined in the file LPX-MIB. This file starts by defining the GainSpan Enterprise MIB:
GAINSPAN-ENTERPRISE-MIB DEFINITIONS ::= BEGIN

Next, several externally-defined objects are imported from various public RFC MIB files.
IMPORTS
 IpAddress, Counter, Gauge, TimeTicks
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 TRAP-TYPE
 FROM RFC-1215;

This is followed by a description of the ?

 AN4: ADDING NEW OBJECTS TO THE MIB

GS-AN004 V0.1 PAGE 3 OF 6 CONFIDENTIAL

2. Define the New MIB Object and Add It to the Existing MIB
An SNMP MIB is defined using a subset of ASN.1 notation. ASN.1 defines some simple primitive data
types (like integer), complex constructed data types, and macros. A set of Basic Encoding Rules (BER) is
used to translate these abstract data values into a string of octets (8-bit bytes) that are actually sent over a
network.

SNMP v1 uses these ASN.1 primitive data types:

Table 1: ASN.1 primitive types for SNMP (From
http://www.et.put.poznan.pl/snmp/asn1/indexasn.html)

Type Description
INTEGER A whole number

OCTET STRING A string of octets representing hexadecimal data

OBJECT IDENTIFIER A string of numbers derived for a naming tree, used to identify an object

NULL An empty placeholder

ENUMERATED A limited set of integers with an assigned meaning

BOOLEAN An integer with only two valid values: true = 1 and false = 2

COUNTER SNMP-specific. An integer which increases up to a maximum value and the overflows to
0

GAUGE SNMP-specific. An integer which increases up to a maximum and then decreases back
to 0

TIMETICKS

IPADDRESS A four-octet string of hexadecimal data

NETWORKADDRESS

SNMP also uses constructors, for building more complex data structures from primitive types.

Type Description
SEQUENCE An ordered list of datatypes

SEQUENCE OF An ordered list of the same datatype

For example, the following definition shows a resource data type which is made up of three fields: an IN-
TEGER, an OCTET STRING, and a BOOLEAN:

Resource ::=
 SEQUENCE {
 Id INTEGER,
 Name OCTET STRING,
 Busy BOOLEAN,
 }

SNMP MIB objects are defined using an ASN.1 OBJECT-TYPE macro template. This template specifies an
object’s name, its OID, data type (complex or simple), value range, allowed operations (access), and de-
scriptive information about the object.

The following example defines a new MIB object, called newMibObject. It is as an integer, both readable
and writeable, and must be present in the MIB hierarchy. The purpose of the object is noted by its de-
scription “A new MIB Object”. Lastly, assuming that this object’s parent node, newMibRootObject has
OID 1.3.6.1.4.999.3, this new object will be located at 1.3.6.1.4.999.3.9:

 AN4: ADDING NEW OBJECTS TO THE MIB

GS-AN004 V0.1 PAGE 4 OF 6 CONFIDENTIAL

newMibObject OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "A new MIB Object"
 ::= { newMibRootObject 9 }

3. Compile New MIB
GHS provides a MIB compiler, smidump, which converts this human readable format to C-language
header and source files, which can then be compiled and linked with application software.

At a command prompt, set the working directory to that which contains the LPX-MIB file and execute
the following command to compile the MIB file:

C:> smidump –f Treck .\LPX-MIB

The argument “–f Treck” specifies to generate C source and header files compatible with the Treck
(GHNet) SNMP agent. The “.\LPX-MIB” argument specifies to use the LPX-MIB module in the current
directory. The command generates the following files:

► gainspan-enterprise-mib_var.h
► gainspan-enterprise-mib_var.c
► gainspan-enterprise-mib_local.h
► gainspan-enterprise-mib_local.c
► gainspan-enterprise-mib.ins

Copy these files to $SNS_ROOT\GHS\ghnet2\snmpd\, where $SNS_ROOT is the root directory of
the Sensor Node Software source code distribution.

4. Modify MIB Compiler-generated Files
The newly generated file gainspan-enterprise-mib.ins contains instructions for modifying
some of the source files in $SNS_ROOT\GHS\ghnet2\snmpd\. Follow these instructions carefully to
hand-modify these files.

In order to fit the resulting built image into the available flash memory, please also modify the following
files. To perform these modifications, please refer to the original GainSpan-provided SNMP files in
$SNS_ROOT\GHS\ghnet2\snmpd\gainspan\:.

► trvars.h:
Copy all “#ifdef WLAN_” statements (and their corresponding #endif statements) from the
GainSpan-provided tvars.h to the newly-generated tvars.h.
For example, copy the line:

#ifdef WLAN_MECFG_MIB_SUPPORT

before
{tfvar_mgmtenty,TM_SNMP_RWRITE,0,3,DESIREDBEACONPERIOD, … }

► gainspan-enterprise-mib_var.c:
Copy all “#ifdef WLAN_” statements (and their corresponding #endif statements) from the
GainSpan-provided tvars.h to the newly-generated tvars.h.
For example, copy the line:

 AN4: ADDING NEW OBJECTS TO THE MIB

GS-AN004 V0.1 PAGE 5 OF 6 CONFIDENTIAL

#ifdef WLAN_MECFG_MIB_SUPPORT

before
u_char *tfvar_mgmtenty(

► To further reduce the flash space required for the SNMP agent, insert “#ifdef
LPX_SNMP_ERROR_CHECK” in all the same places as in the GainSpan-provided file.

5. Replace MIB Compiler-Generated MIB Instrumentation Files
The MIB compiler smidump generates a default “instrumentation” module. This module implements the
handler stubs for all SNMP set, get and trap messages defined in the MIB. GainSpan supplies files that
contain the handler implementation (located at $SNS_ROOT\GHS\ghnet2\snmpd\gainspan\) for
GainSpan-defined MIB objects that replace the MIB compiler generated stubs (located in
$SNS_ROOT\GHS\ghnet2\snmpd\).

► Replace $SNS_ROOT\GHS\ghnet2\snmpd\gainspan-enterprise-mib_local.h
with $SNS_ROOT\GHS\ghnet2\snmpd\gainspan\gainspan-enterprise-
mib_local.h

► Replace $SNS_ROOT\GHS\ghnet2\snmpd\gainspan-enterprise-mib_local.c
with $SNS_ROOT\GHS\ghnet2\snmpd\gainspan\gainspan-enterprise-
mib_local.c

6. Write Custom MIB Instrumentation Implementation
Handlers must also be defined for the new MIB objects. The best place for these handlers is in the sensor
application module that will use the new MIB objects. On initialization, the application must call the API
function LpxRegisterSnmpCb() to register these handlers with the SNMP agent. If the MIB handlers are
not registered, the SNMP agent will ignore incoming MIB requests for what it perceives as unknown MIB
objects.

► Define a handler function to process SNMP SET and GET messages bound for the newly-defined
MIB objects.

► During application initialization, call LpxRegisterSnmpCb()to register the handler with the SNMP
Agent. Please refer to the API documentation for more details about using this function.

► Once the handler is registered, the SNMP agent will call your function when it receives SNMP
SET/GET commands for the MIB objects. The handler should then perform any required opera-
tions. Typically, this is reading or writing parameters to the flash parameter region reserved by the
sensor application.

7. Rebuild Entire Project (GSPS and Application)
Both the GH Net SNMP agent and the sensor application must be recompiled for the new MIB to take
effect. Once both modules have been compiled, the entire project can be built. Once built and downloaded
to the device, performing SNMP SET/GET on the new MIB objects can test the newly added MIB ob-
jects.

Method 2: The Easy Way
It is possible to use SNMP for configuration without modifying the MIB definition file and rebuilding the
GainSpan Sensor Node Software. GainSpan provides a vendor-specific MIB, which can be used to send
up to 256 bytes of data defined in an application specific way. Please refer to the GainSpan Sensor Node
Software API document for the MIB definition of the file.

 AN4: ADDING NEW OBJECTS TO THE MIB

GS-AN004 V0.1 PAGE 6 OF 6 CONFIDENTIAL

To utilize the vendor-specific MIB, follow these steps:

► In the sensor application source code file (e.g., LpxSensors\MySensor\MySensor.c), de-
fine a set of handlers to process SNMP GET and SET messages for this MIB object. Typically these
handlers would read from (for GET) or write to (SET) the flash configuration region. These func-
tions should have the following prototypes:
• VOID MySensorGetCfg(SENSOR_CONFIG_PTR ConfigPtr)

• VOID MySensorSetCfg(UINT8 Param, UINT8 * value, UINT32 length)

► Register these as SNMP Callback functions using LpxRegisterSnmpCb() in a public function.
► Allocate enough bytes to the vendor-specific MIB for all configuration parameters. The vendor-

specific MIB object (lpxvendorspecificdata) is defined as a string, and allows up to 256 bytes of
storage. A second MIB object (lpxvendorspecificdata_len) stores the length of bytes allocated.

► Rebuild the application (LpxAppSw.gpj) only. It is not necessary to rebuild GSPS.

GainSpan Corporation • 121 Albright Way • Los Gatos, CA 94032-1801 • U.S.A.

+1 (408) 689-2129 • info@GainSpan.com • www.GainSpan.com

Copyright © 2008 by GainSpan Corporation. All rights reserved.

GainSpan and GainSpan logo are trademarks or registered trademarks of GainSpan Corporation.
Other trademarks are the property of their owners.

Specifications, features, and availability are subject to change without notice.

080127TE

